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Introduction 

In this work we define an algebra of  pseudodifferential operators (PDO) with symbols 

on infinite-dimensional symplectic manifolds of  solutions of some infinite-dimensional 

Hamilton equations. 

In the finite-dimensional case the theory of  PDO with symbols on symplectic manifolds 

(or asymptotic quantization theory) was considered in [KM1,KM2]. In these works PDO 

were constructed using asymptotic solutions of Schr6dinger equations corresponding to 

the transition mappings of  symplectic manifolds. These solutions are obtained by Maslov 

canonical operator method, see e.g. [M,MF,KM2].  

Differential and pseudodifferential operators with infinite-dimensional linear phase spaces 

have been studied e.g. in [AKR,AR,BK,B,BV,Kh,SU,S].  The development of  asymptotic 
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methods in infinite-dimensional analysis began in the works [AHK2,AHK3,ABHK,Re] 

(stationary phase method for infinite-dimensional oscillatory integrals, see [AB] for fur- 
ther developments and applications). The results of these authors were applied to the in- 

vestigation of some classes of infinite-dimensional PDO in [D1,D2,D3,D5] in which an 
infinite-dimensional version of Maslov canonical operator method was given. 

In the present work we consider two types of solution manifolds for Hamilton equations 
in a rigged Hilbert phase space 7-(2+ C 7-/2 C 7-/2_. The corresponding Hamilton function H 

is supposed to have the form H = B + h, where B is a second-order polynomial continuous 
on 7~2_, and h is the Fourier transform of a complex measure on 7-/2. The particular form of 

the corresponding transition mappings allows to apply the asymptotic methods mentioned 
above and to construct PDO with symbols on these manifolds (at least mod O(h)). The PDO 

with symbols on local maps used in this construction are defined as functions of self-adjoint 
operators satisfying canonical commutation relations in L2(7-/_, r/), where 7/is an ?'/+-quasi 

invariant Gaussian measure. 
We pay attention here only to analytical questions considering the case of simply con- 

nected manifolds. The topological meaning of cohomological conditions for the existence 
of global PDO associated with homologically nontrivial manifolds ("quantization condi- 

tions") which can be calculated (at least heuristically) as in the finite-dimensional asymptotic 

quantization theory is however not clear yet. 
Let us remark that our considerations have some connection with the approach initiated 

in [Se]. We would like to mention also the paper [AP] where the geometric quantization 

method for some infinite dimensional manifolds has been considered. 
The content of the present paper is as follows. In Section 1 we consider some necessary 

technical questions. In Section 2 we introduce PDO with symbols on Hilbert phase space 

and obtain the main formulae of symbolic calculus, namely the formulae giving the com- 
position and the commutator of two PDOs. In Section 3 the solutions of the corresponding 

Schr6dinger equations are constructed in the form of PDO with oscillatory symbols. In 

Section 4 we discuss the geometry of the symplectic manifolds mentioned above and give 
an invariant definition of PDO with symbols on them. 

1. Some questions of analysis is the spaces of Fourier transforms 

Let/3 be a real Banach space and P be a complex one. Consider the space .A4(B, P )  of 
P-valued measures # on the dual space B' with bounded variation Var I#1, where I~zl = 

sup~ E'p', II~ II _< 1 ](s e,/z)J is the variation of the positive measure I(~,/z)l. Denote by Mz (/3, 79) 
the subspace of measures satisfying the condition 

f eXllPllllzl(dp) < oo, X ~ ~l .  (1) 

For any )~ the space Mx is a Banach space with the norm II~llx = feXllpllllzl(dp) 

(M0 = M). We set M ~  = f"lMx, M+0 = UMz. 
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Let ,4  be another Banach space, and let v ~ Moo (A x/3, 7~), # 6 Mx (,,4,/3). Consider the 
Fourier transforms f and ~0 of v and/z respectively, i.e. f (x, y) = f e i(q'x/+i (p, y) v (dq, dp),  

~0(x) = f e i/q, x)~(dq),x E .,4, y E /3. Let A : A - - +  /3 be a bounded linear operator and 
s e t ~  - A +~0. 

T h e o r e m  1. The composition f (., ~ (. ) ) is the Fourier transform of some measure g c 
M), (.,4,/3). If  the measure v is differentiable in the direction h, fl is also differentiable in 
this direction. 

Proof We first remark that because of (1) f is an entire mapping [AHK2]. Thus we have 

f ( x , y  +z)  = f ( x , y )  + ~. fk(x ,y)(z) ,  (2) 
k = l  " 

where fk(x, y) is the k-linear ~-valued  functional, 

fk(x, y)(Z) = f e i(q' x )+i( p, y ) ( p, z )k v(dq, dp) .  (3) 

Let now y = Ax, z = q)(x). Then: 

fk(x, ax)(~o(x))=fei(q 'x l+i(a*p'Xl(p,  f e i I ° ' x ' i z (dO))  k v(dq, dp) 

= J ei(q+A*p+0, x)( p, ~)*k (dO)v(dq, dp),  (4) 

where the symbol .k means k-multiple convolution and A* is the adjoint of  A. Therefore 

f (x, Ax + ~o(x) ) = f e i(q+a* p+O' X)e(P' Iz) (dO)v(dq, dp)  (5) 

oc  1 T *k  (the exponent e (p' u/ =- ~ k = 0 (  /k.)(p, Ix) exists as an element of  the Banach algebra 
Mz(A,/3)).  

Let fl be the image of the measure e (p' ul (dO)v(dq, dp)  under the mapping (q, p, 0) ~-~ 
q + A*p+O.  

It is easy to see that lift IIz _< c II v IIx+ll~tllx and that the differentiability of v implies the 
differentiability of  ft. 

Consider now a real separable Hilbert space 7-( with scalar product (., .) rigged by Hilbert 
spaces H + ,  7-/_ with Hilbert-Schmidt  embeddings: 

H+ c 7 c 7 _ .  (6) 

Let f ' ( 7 )  be the space of mappings f :  7-/ ~ 7 which are Fourier transforms of mea- 
sures of the class M ~ ( 7 , 7 c ) ( 7 c  is the complexification of 7) .  U ( 7 )  is a subspace 
of the Banach space ~ z ( 7 )  of  7 -va lued  Fourier transforms of the measures of  the class 

M~ (7,  7C) .  
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L e t / C ( ~ )  be the Banach space of bounded linear operators B : 7-(_ ~ 7-/+ with trace- 
norm. Consider the space /3(7-/) = /(:(7-/) × 5r(7-0 × 7-/ of  the mappings ~ ~ x w-~ 
Bx  + l(x) + h • 7-/, B •/(:(7-0,  l • 5v(7-/), h • 7-/./3(7-/) is a subspace of the Banach space 

/34(/-0 = /C(~)  x I 4 ( ~ )  x/--[. 
Let us consider the differential equation in 7-/: 

Jc(t) = L (x ( t ) , t ) ,  x(O) = y, t • [O,T] C R 1. (7) 

Assume that L( . , t )  • /3(7-/)and the mapping [0, T] ~ t w-~ L( . , t )  • C 1 ( ~ _ , 7 - / ) i s  

differentiable. 

T h e o r e m  2. A solution o f  the Cauchy problem (7) exists for  any initial data y and the 

mapping y ( t )  : y w-~ x( t )  has the form id + ~o(t) with ~o(t) • /3(7-0. I f  the measure 

corresponding to L is differentiable in some direction h • ~ + ,  then the same property 

also holds f o r  the measure corresponding to ~o. 

Proof  The existence of global solutions follows from the results of  [H]. We remark that 
(7) is equivalent to the equation 

~b(t) = /~ ( id  + ~o(t), t), ~0(0) = 0 (8) 

in the space of mappings Y : ~ --+ 7-(, where £(Y ,  t ) (x)  = L ( Y ( x ) ,  t). It is easy to check 

that the mapping £ is differentiable in any space/3x (~ ) ,  which is enough for the solvability 
of  (8) in/3x (7-/). Notice at least that by Theorem 1 the measure corresponding to £(g ,  t) is 
h-smooth for any g • / 3z ,  if the same property has the measure corresponding to L(t) .  [] 

Let U(7-/, E l) be the space of real-valued functions on 7-/which are Fourier transforms 
of  measures from M~(7-/, C1). ~(7-(, E l) is a subspace of the Banach space .T'4 (7-/, R1). 

We will need the following fact. 

L e m m a  1. Let y • 5t-(7-0, y ( x )  = f ei(p,X)v(dx) f o r  some ~ e - v a l u e d  measure v and 

y = d S f o r  some function S : 7-[ ~ ~1. Suppose that v is smooth in some two directions 

hi ,  h2 • 7-[+. Then S • .T'(~, 1~ l) (modulo an additive constant). 

Proof  For any y E 7-/set Yl = (y, h l ) , y2  = (y, h2). Obviously we have O y 2 ( X ) / O X  1 = 

Oyl (x)/Ox2, i.e. Pl v2(dp) = P2Vl (dp). Consider the measure # = (1/Pl)Vl = (1/pz)v2.  
Let us prove that/z • M ~ ( ~ ,  7-/c). Consider the projection 0 of  v into the plane {hb h2}. 

Because of hi ,  hz-smoothness of  v we have O(dp], dp2) = f ( P l ,  P2)dp l  dp2 for some 
smooth function f .  Evidently, 

f e411pllllz(dp) ] 

ip_,!+_ip2 l f exp XlIPll ~ j I/z(dp)l 
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2. Pseudodifferential operators with symbols on a Hilbert phase space 

Introduce now the Hilbert phase space 7-/2 = 7-~ x x 7-~p, 7/x = 7-/p = 7/, with the natural 
symplectic form dp A dx generated by the scalar product (., -). ,~2 has the natural rigging 

7 / 2  C 7/2 C 7[  2 _ (9) 

with 7/2 = 7J+ x 7/+, 7/2 _ = 7/_ x 7/_.  

Consider a Gaussian measure 0 on 7/_ defined by the characteristic functional 

(t) = f e i(t' x) r/(dx) = e -(Bt" t)/2, t E 7/, (10) Xo 

where B is a bounded invertible symmetric positive operator in ~ .  It is well known that r/ 

is a-addit ive in 7/_ and quasi-invariant with respect to 7/: r/(dx + t) -- fit (x)r/(dx), t ~ 7/, 
where 

fit(x) = e -(Bt ' t) /2-(Bt 'x)  (11) 

Let C be a symmetric bounded operator in 7-/. Consider the function 

ott(x ) = e i(Ct't)/2+i(Ct'x), t E 7/. (12) 

ott (') is measurable with respect to r /because of the measurability of the linear functional 
(Ct, .). It satisfies the equation 

ott+r (x) = ott(x)Otr(X -4- t) (13) 

and will be called a Gaussian cocycle. 
Consider the family U of commuting unitary operators Ut, t E 7/+, in L 2 (7 / - ,  r/) defined 

by the formula 

Ut~o (x) = ctt (x)x/--~t (x)<o(x + t). (14) 

The following lemma is proven in [Sa,D4]. 

Lemma 2. The family Ut is strongly continuous in t and cyclic with the cyclic vector ~o -- 1 

(i.e. spant~7~{ U t 1} is dense in L2(7 / - ,  7/)). The family Ut is unitary equivalent to the family 

o f  operators Vt o f  multiplication by functions e i/t, ') in the space L2(7-~-,v), where v is 

Gaussian measure on 7/_ with characteristic functional 

Xv(t) = f ei(t 'x)v(dx) = e -(Dt't)/2, t c 7/, (15) 
J 

D = B -1 + C B C .  [] 
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Let F : L2(7-/- ,~)  w-~ L 2 ( ~ - , v )  be the corresponding intertwining operator: 

FUt = VtF. 

Remark 1. 
(1) If I / is  the standard Gaussian measure associated with 7-/and a - 1, the operator F 

coincides with the well-known Fourier-Wiener transform, see e.g. [BK,DF]. 

(2) The spectral measure v depends on the choice of  a particular cyclic vector for U. 
Different cyclic vectors give equivalent measures and therefore unitary equivalent 

intertwining operators. 
(3) The operators Ut and the operators Wr of multiplication by fuctions e i( '  r), r c 7-/, 

satisfy the canonical commutation relations in the Weyl form 

Ut Wr = e i(t' r) Wr Ut. (16) 

(4) The analogue of  Lemma 2 holds true also in the case of  unbounded operators B and 
C satisfying some additional conditions [D4]. 

Let us consider now functions of  the generators x and D of the families W and U. Let 
H be a function (symbol) on 7-/2 . Define formally a pseudodifferential operator (PDO) 

-- H, ,~  in L 2 ( ~ - ,  17) using the operator F: 

ISlgo(x) =- H(x,ihD)go(x)= F p l x F y ~ p  [H ( l ( x  -q- y),hp)go(y)] (17) 

for any h c (0, 1]. The sign "p  ~ x"  means that the corresponding operator is applied to a 

function of  p and the result is considered as the function of x. 
Further we will specify the definition of  PDO for particular classes of  symbols. 

R e m a r k  2. Originally infinite-dimensional differential operators (with constant coeffi- 
cients) were considered as functions o f x  and D in [SU]. The spectral transformation F was 
applied there to their investigation. 

Proper t ies  1. 

(1) PDO with real symbols are symmetric operators. 

(2) PDO defined by different measures and cocycles are unitary equivalent iff the corre- 
sponding measures and cocycles are equivalent. 

(3) In the case of  ~ = ~n, at(x) = f ( x  + t ) / f (x ) ,  pt(x) = g(x + t)/g(x), where 
f ( x )  = e -(Bx' x)/2, g(x) -- e i(Cx' x)/2 for some constant matrices B, C. Therefore 

Ho, ~ = r (x)  - 1 H ( x ,  ihO/Ox)r(x), (18) 

where r = f v ~  and H (x, ihO/Ox) is the PDO defined by the usual Fourier transform. 
(4) Let H be a continuous polynomial on ~ 2 ,  i.e. H = Y~n=0m Bn, where Bn is an n-linear 

continuous functional on 7-/2_. Then /~ is the differential operator with polynomial 
coefficients with natural invariant domain of definition D which consists of 7-/+-smooth 
functions f on 7-/_ satisfying the condition 

Ildnf(x)ll, Ilxll m _ ~ L2(7-/2_, ~) (19) 
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for any n, m, where II • IIn is the norm in n-tensor power 7-(_ °n of  7-/_. 
qt'l®n+m Define a linear functional ~ on Consider a measure # E M~o(7-[, C) and B e ,~+ . 

the space ID in the following way: 

f f(y)~(dy) = f (B, dnf(y)® y®m)Iz(dy) (20) 

(we use the notation f f (y)~(dy) = ~(f)). 

The space of  such functionals will be denoted by MP(7-[). 
Consider the space Cpol (7-/_, L2 (7-/_, 77)) of T-/+-smooth mappings ~0 : 7-/_ -+ L2 (7-/_, r/) 

satisfying the condition 

IId~011n _< c(1 q-IIxllm_) (21) 

for some constants c = c(n), m = re(n) and any n (where II • IIn is the norm in the space 

7/_ ~n ® L2(7-/_, r/)). In other words, tp is a function on 7-/_ x 7-g_ and ~0(., y) e L2(7-[_, O) 
for any 3' e 7-/_. We need the following technical fact. 

L e m m a  3, For~p E Cpol(7-[-, L2(7-/, rl)) the function cb(.) = f~o(., y)~(dy) c L 2 ( ~  , O) 
and 

Fp--,x~(p) = f Fp--,x~p(p,y)~(dy). (22) 

Proof For f c L2(7-/_, rl) 

f ~(x)f(xlrl(dx) 

= ftf(B.d~i~o(x,y)®y®m).(dy))f(x)~(dx) 
= fl\((B,d~;~o(x,y) Ny®m)f(x)rRdx))#(dy) 

_< CIIfll 2(~_,o)llBII2+Varl/zl 

because of (21), and 

f ~(x)f(x)o(ax)= f (f  w(x,y)f(x)o(ax)),(dy). 
Then for g e L2(7-/-, v) 

f (F4O)(x)g(x)v(dx)= f *(x)(F-lg)(x)~l(dx) 

= f (f ~o(x, y)(F-' g)(x),j(ax))~(dy) 
= I Fp---,xqO(p, y)~(dy). E] 

J 

Let us introduce now the following spaces of  functions on 7-[ 2. 
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~---the space of functions which are Fourier transforms of measures from Moo (~2, C). 
5°n--the space of 7-/2_-smooth polynomials of the order < n; D = UP n. 
Dn = 5on + f'(i.e. 79 9 f = P + tp, 5O E 5on, {0 E ,~"). 

E--the space of Fourier transforms of functionals of the class MP(7-~2). Obviously 

C = {H: H(x,  p) = f e i(x' x'}+i{p, p') P(x, p, x t, pt)O(dx t, dp~), 

P E 5O(7-[4_),0 E Moo} 

Proposition 1. For H E .T" the PDO I2I is bounded operator in L2(7-/-, r/) and leaves 
invariant the space D. 

Proof Let H(x,  p) = f e i(x' x')+i(p, P'}O(dx', dp'), f E L2(7-/_, r/) Then: 

f - t • ,' • ! ! ! I2I f ( x )  = e '(x'x }/2Fplx[e~h(P' P )Fy~p[e l(y'x )/2 f(y)]]O(dx ,dp  ) 

f . t . t ! ! = e ~(x'x )/2Uhp,[e'(X'X }/2f(x)]O(dx ,dp  ) 

f el{X, x') Uhp, f (x)e ih<x'' P'}/20 (dx', dp') (23) 

and/-}f E L2(7-(_, i/) by Lemma 3. It is easy to check that for hn E ~+~n, h E 7-/+ and 

f e d  

{dnI2I f ( x ) ,hn} (x ,h )  m E L2(H- ,  rl) (24) 

which is equivalent to (19). [] 

Proposition 2. For H E ~ the operator 121 is defined on ~) and leaves ~ invariant. 

Proof The formula (22) shows that (23) holds for f E ID and 0 E MP(7-/2). Now the proof 
can be completed similarly as the proof of Proposition 1. [] 

Proposition 3. Let H, G E £(,7..~2), H(x,  p) = f e i(x'x'}+i(p' P')O(dx', dp ~) with 0 E 
MP(7-/2). Then, I?IG = ]Q1, G Igl = N2, where NI, N2 E E and 

f ' 1 , lhx')O(dx ', dp'), N1 (x, p) = el<x, x'}+i(p, p }G(x q- ~hp ,  p - (25) 

f 1 t l~lx')O(dx t, N2(x, p) = e i<x'x')+i(p' P')G(x - ~hp , p + dp'). (26) 

Proof Let G(x, p) = f e i(x' x")+i{p, p"}OG (dxt,, dp"). Then: 

Ul(X, p ) =  f ei(X'X'}+i<P'P') f ei(x+hp'/2'x")+i(P-t~x'/2"P"}OG(dx",dp't)O(dx",dp '') 

f ei{X'X'+X")+iIP' P'+P")eih((p"x")-(x"P"))/Zo-tdx't,o~ dp")0 (dx', dp') 
J 
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= f ei(X, y)+i(p, q)ONt (dy, dq), 

where ON~ is the image of the functional e ih((p''x')-(x',p''))/20 G (dx 'r, dp')O (dx', dp') under 
the mapping x ~ + x" ~ y, p' + p" w-~ q. It is easy to see that 0N~ 6 MP(7-(2). 

Let us calculate now the symbol of the composition (~/4. By formula (23), 

f . ^ - t t t' IglG f ( x )  ---- e~(X'X')Uhp,(G f)(x)elh(x 'P )~(dx ,dp') 

f ~i(x,xl)-i((x+hp'). x'1) , ,, lr T .e l . . ' t  ~--- c c t./h( p +p )JL.~) 

X eih((x"P')+(x"P"))/20)G (dx 't, dp") f0 (dx', dp') 

-= j e i(x'x'+x'') Uh(p,+p,, ) f (x)eih(x'+x'1,p'+p")/2 

×e -t~((x''p'')-(x' 'P'))/2(OG(dXI', dp")O(dx ' ,  dp') 

The symbol N2 can be calculated similarly. [] 

Corollary 1 (Commutation formula). Let G, H 6 g(7-/2). Then, 

(i/h)[H, G] = {H,"-G} + O(h2), (27) 

where the remainder is estimated in the strong sense on D ({., -} means the standard Poisson 
bracket on 7-/2). 

Proof It is enough to consider two terms of the decomposition of the right-hand sides of 
(25) and (26) expanded in power series in h. [] 

We shall now discuss PDO with symbols of another type. We first introduce unitary 
operators TK resp. 7~K in L2(7-/-, r/) resp. L2(7-L-, v), K c /C(~) :  

T K f ( x )  = x / ~ f ( ( I  + K)x) ,  7rK~p(p) = gX/~tp(p), 

where SK(X) = 7((1 + K)dx)/rl(dx),,~K (P) = v(( l  + K ) d p ) / v ( d p ) .  

Proposition 4. Let H(x,  p) = e iP(x' p)/h, where P E T'2(~2_). Then, 

f t f ( x )  ---- (det(l + K1)(I + K2)) -1 

×eiPi (x) TK. ( Fp~ x eiP2(p) 7"1¢2 ( Fy~p eiP3(y) f (Y) ) ), (28) 

where PI, P2, P3 c 792(~_), KI, K2 c/C(7-() and depend on h. 

Proof Let us prove the statement in the case H(x,  p) = e 2i/Kx' p)/h. By definition, 

~-1 i(Kx I?t f ( x )  = rp_~xe 'P)/2Fv-~p(e'(Ky'p) f ( y ) ) .  

Denote by Ut the operator in L2(7-(_, v) defined in the following way: 

(J t f (P)  = Fy---~p ei(y't) F-1 - p _ _ + y .  
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The family lit, t 6 7-/is cyclic and satisfies canonical commutation relations with the 

family Wt. Therefore (Jtf(p) = ~ t ( P ) x / - ~ ) f ( P  + t), where Pt(P) = v(dp + t)/v(dp) 
and fl is some cocycle. This cocyle is Gaussian,/3t (x) = e i(at '  t)/2 +i{at, x). The explicit 

expression for the operator A is given in [D4]. 

It is easy to see that P-Kx (x) = sKdet(l -- K) -1,  PKp(P) = gKdet( l + K) -l  . 
Then, 

Igl f (x )  = (det(I  - K)(I + g))-la(x)T_K(Fp~xb(P)7"K(Fy~pf(y))), 

where a(x) = OtKx(X), b(p) = flKp(P). 
The general case can be proved similarly. [] 

Corollary 2. The PDO with symbol of the form 

f ~ iP ' ' H ( x , p ) =  ei(X'X')+i(p'P)e (x'p'x'P)/hO(dx',dp'), (29) 

P 6 7~2(7-/4), 0 c £, is correctly defined on • and leaves ~ invariant. 

Corollary 3. For H of the form (29) and G ~ £ formulae (26) and (27) hold true. 

3. PDO with oscillatory symbols and solutions of Schriidinger equations 

We now want to consider PDO with symbols depending on the parameter h and oscillating 

in 0 and to obtain with their aid the solutions of  Schr6dinger equations for PDO with 79 2- 

symbols. 
For this we need PDO of another type. If H ~ 792, the operator H(x, ihO/Ox) can be 

defined [S,Kh]: 

, , , x ,  iha/ax, ,x, = f e "" x -y ) /hH(x ,p )qg (y )dpdy .  (30) 

Here f - i s  a normalized integral defined by Parseval formula 

f ei<Ax'x>/hf(x)dx= f e -(A 'Y 'Y)/h#f(dy)  (31)  

for f an h-Fourier transform of a measure or distribution # f :  f (x )  = f e i(p' x)/hlzf(dp) 
(see [AHK1,S,Kh]). 

We can now rewrite the composition formula (25) in the following form: 

I21G=N, N ( x , p ) =  H ( x  + lihO/Op, p - l i h O / O x )  G(x,p). (32) 

We assume from now that the measures corresponding to the elements of  the spaces 
79n resp. /3 satisfy the conditions of  Lemma 1, i.e. are smooth in some two directions 
hi,h2 6 7-[+ resp. 7-/2+. 
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Let us consider the (mod h) Schr6dinger equation 

~-~ - ~Ht Tt = O(h), (33) 

To = id, 

where H = Ht ~ D 2 and is real valued. Assume that the mapping t --~ H( t )  ~ B~(7~2_, Nl ) 

is 2-differentiable for any )~. 

Consider first the classical Hamiltonian system 

OH OH 
~t = - - ,  p -- (34) 

Op Ox 

in 7-( 2. 

Denote by y/4 (t, r ) ,  t, r 6 [0, T] the corresponding shift along integral curves of (34). 
Let Symp~:(7-(2) be the space of symplectomorphisms V of 7"/2 such that g - id 6/3(7-/2). 

It follows from Theorem 1 that Symp~: (~  2) is a group. 

Proposi t ion 4. 
(1) Forany t ,  r E [ O , T ] , v n ( t , r )  ~ Symp~-(7-/2). 

(2) For any g ~ Symp~-(7"/2) there exists a Hamiltonian H o f  the above type such that 

y = y/~ (0, 1). 

Proof  The first statement follows immediately from Theorem 2. The construction of a 
Hamilton vector field corresponding to g is given in the finite-dimensional case in [KN]. It 

is easy to check that this construction remains true in the case of  a Hilbert phase space and 
that this vector field belongs to /3(~2) .  Lemma 1 implies that the corresponding Hamiltonian 
belongs to 792 . 

T h e o r e m  3. The (mod h) SchrOdinger equation (33) has a solution of  the form Tt = Ut, 

where Ut(x, p) = e iPt(x'p)/h + Sh, t(x,  p),  P E 792, S E .U. The remainder is bounded in 

the strong sense on D. 

Proof An equation for the symbol U can be obtained by the formula (26): 

Uo(x, p) = 1. (35) 

Consider the phase space ~ 4  = 7_/2 x ~ 2  = {(x, p, q, y)} with the symplectic form 

dy A dx + dp A dq generated by the pairing (., .). Consider the Hamiltonian function 

ISl (x, p, q, y) = H ( x  + l q, p _ l y ) .  Obvious ly /4  e 792(-]_/4, []~1). Eq. (35)can  now be 

written in the form 

[(O/Ot) - (i/h)lSlt(~, ihO/O~ )lUt(~ ) = O(h), 

U0(s e) = l, (36) 

where ~ = (x, p). 
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The solution of  such an initial value problem was constructed in [D 1,D2] by the method of 

Maslov 's  canonical operator. Let Ao = 7-/2 x {0} = {(xo, Po, 0, 0)} and At = yfl(O, t ) (Ao)  

Let/CA, : C°°(At )  ~ C~(7-/2) be the Maslov canonical operator corresponding to the 

mani fo ld  A t . Then 

Ut (~) = eiC(t)/h/CA, ( i )  (~) (37) 

for some c(t) E ~1. It follows from the results of [D1,D2] that Ut(x, p)  = e iPt(x' p)/h q_ 

Sh, t ( x , p ) , P  E 792, S E .T. Propositions 3 and 4 imply that U is bounded operator 
(the determinant in formula (22) is not equal to zero because of the structure of  the 

manifold At). [] 

Now let us specify the manifold A t .  Introduce new variables: 

x = ½ (a + Ix'), q = Ix - Ix', p = ½ (fl + fl '), y = - f l  + fl'. (38) 

Evidently H(x ,  q, p, y) = H ( a ,  fl) and 

OH OH 
6t(t) = l~(t) -- Ix'(t) ---- xo, i f ( t )  = PO. (39) 

Off ' O ix ' 

We see that (ix, fl) = Yt(ix', fl') and 

At = G(yt)  = {(ixt, fit, Ix, fl): (ix, f )  -- Yt (ix', fit)} (40) 

is the graph of Yt in coordinates (38). 
Set for any y 6 Symp~: Uy = /CG(×)(1). As above, U×(x, p) = e iP(x' p)/h + Sh(x, p),  

P 6 7 ~2, S 6 f ' ,  and the operator T× = / ) y  is bounded. 

Theorem 4. 
(1) The mapping y w-~ Ty is an asymptotic projective representation o f  the group Symp.~, 

i.e. 

(2) 

T×, r ~  = cy~, n T×,, ×2 + O(h), 

where cy~, ~'2 is some 2-cocycle. 

ForG ~ E 

& r y  = rv(×*-~a) + O(h), 

where y*G = G(y( . ) ) .  

(41) 

(42) 

Proof. Notice that for any ~, ~ S y m p y  there exists a Hamilton function H(t )  ~ D 2 such 
that F = FH(0, l) (Proposition 5). Therefore T× = cT1, where Tt satisfies Schr6dinger 
equation (33). This implies the statement of the theorem, in a similar way as in the finite- 
dimensional case [KM1,KM2]. [] 



Remark 3. 
(1) 

(3) 
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The considerations above give the main terms of  the corresponding h-expansions. The 

estimates of  the remainders can be obtained by a stationary phase method. 

The kernel U× is universal in the sense that it does not depend on the choice of  the 

measure 77 and cocycle ~. 

In the finite-dimensional case the operators r -  l Tr  (see formula (18)) coincide mod O(h) 

with the operators considered in [KM1,KM2]. 

4. Symplectic manifolds connected with Hamiltonian systems in 
Hilbert phase space and their asymptotic quantization 

Let us now consider a manifold 27 modeled on 7"/2 with an atlas H = {(U~, ~0~)}Se~. Let 

~pt~ = ~p~ ~0~ -l , ~, ( 6 A be the corresponding transition mappings. 

Definition 4. The atlas H will be called an U-atlas, if for the transition mappings gt we have 

~t¢ 6 Symp~:(~2).  The set of all equivalent U-atlases on Z' will be called a symplectic .T'- 

structure. The manifold Z' with a fixed U-structure will be called a symplectic F-manifold.  

Properties 2. 
(1) Z' is equipped with the natural symplectic form generated by the forms ~o~ (dp/~ dx), 

(2) Z is a real-analytic manifold. 

Example 1. Consider the Hamiltonian system 

OH OH 
2 -- , /~ -- (43) 

Op Ox 

where H 6 792 and is allowed to depend on t as in Theorem 3. Let M be the space of 

trajectories [0, T] 9 t ~ r/(t) 6 7-/2 of the corresponding flow. Consider the mapping g)t : 

A// 9 ~ ~ rl(t) c 7-[ 2. From Theorem 3 we immediately have the following proposition. 

Proposition 6..Ad is a symplectic .U-manifold globally symplectomorphic to 7-[ 2. Any atlas 

formed by the mappings opt is an .T'-atlas on .Ad. [] 

Example 2. Thenextexampleisgivenbythemanifoldof integralcurvesof theHamil tonian 
vector field (43) on a given level of  fixed energy. Let H E 791 and be independent of  t. 
Suppose that a is a regular value for H, in the sense that dH  7~ 0 on the level surface 

7~ = {~ e ~ 2 :  H(~)  = a}. Consider the space N" = 7-¢./~'H of integral curves of the 
Hamiltonian system (43) on 7~. 

Let/C C 7-/be a Hilbert subspace ofcodimension 1 and (/C 2, dp  A dx) be the correspond- 

ing phase space. Then we have the following proposition. 
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Proposi t ion 7. N" has the structure o f  a symplectic U-manifold with the space (/C 2, dp/x dx) 

as a model. 

Proof  Consider at first the space 7"4. Let us introduce a manifold structure on 7-4 in the 
following way. Choose an orthonormal basis in ~ 2  formed by an orthonormal basis in 7-/ 

and the corresponding biorthogonal one in ~ ' .  Consider an atlas on 7"4 formed by pro- 
jections on the corresponding coordinate linear spaces of  codimension 1. The transition 

mappings in this case have the form .~2 E) R 1 9 y = (Yl . . . . .  Yn- l ,  Yn, Yn+l . . . .  ) 

(Yl . . . . .  Yn-1, Yn, Yn+l . . . .  ), where the function ~0 : 7/2 O 7~ 1 ~ ,]-71 locally satisfies the 
equation H ( y ,  ~0(y)) = a and is defined by the implicit function theorem. In a similar way 
as in Theorem 2 it can be shown that ~0 e D 1 (H  e @ 7~ 1, R1) and ~ - id e/3(7-/2- ~ R~ ) 

(the equation above can be considered as an equation in the space/3z. 
The Hamiltonian vector field (43) is tangent to 7~. Therefore Theorem 2 implies that the 

factor-space A/" = R / Y H  also has a manifold structure with the atlas formed by projections 
on the corresponding coordinate subspaces of  codimension 2 and the transition mappings 
y = id + 0, 0 e /3(7"/2 E) T~2). By the usual construction of Hamiltonian reduction the 

restrictions of  the form dp/xdx on these subspaces are nondegenerate and form a symplectic 
structure on .M. Therefore these subspaces are symplectomorphic to/C 2 and the transition 

mappings belong to the class Symp:=0U2). [] 

Our next goal is to construct an algebra of  PDO with symbols on a symplectic .Y'-manifold 

I ' .  We consider only the case of  simply connected 17, for example 17 = M or I7 is a simply 

connected domain of N' .  
Define the space £(17) of complex functions @ on I7 such that for any map (U~, ¢p~) the 

function @~0~ -l : ~0~(U~) ~ C l is the restriction on ~o~(U~) of some function @~ e £(7-/2). 

The definition is correct: because of Theorem 1 the mappings of  the class/3(7-/2) preserve 

the class £. Notice that for fixed ~ e A the correspondence @ ---* @~ is unique because 

of the analyticity of  @~. The space £ ( Z )  has the structure of  a Poisson algebra with the 
Poisson bracket {-, -} generated by the symplectic structure on 17. 

Let us fix a Gaussian measure r /and a Gaussian cocycle ot and define for each ~ e A 

the mapping Q~ : @ ~ ~ .  Because of the results of Section 2, this mapping gives an 
asymptotic quantization of  the Poisson algebra £(I7) :  

( i / h ) [ ~ ,  ~b~] = {@,-"~}~ + O(h2). (44a) 

Now let us construct a quantization which is invariant under the choice of  ~. For this 
we shall give an invariant definition of PDO with g (E) - symbo l .  Let (U~, ~0~), (U¢, q)¢) be 
two intersecting maps and let y~, ~ be the corresponding transition mapping. Obviously 
@~ = y~* ~@~ and, because of (41), 

^ ^ 

rv~ ' ~ ~ = ~ rye, ~ + O(h). ~44b) 

Introduce now the (modh) sheaf 8(2?) of  linear spaces over 17 putting into the corre- 
spondence to each map U~ the space F = L2(7-[_, rl) and defining the homomorphisms 
r~¢ : F~ -~ F¢ for U~ D U¢ with the aid of  the operators T : r~¢ = T×~¢. The space of 
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sections ~ of this sheaf will be denoted by F ( Z ) .  ~p satisfies the equality 

o ~p~-I = T×~,~ (~p o ~0(-1) + O(h) (45) 

on the intersection U~ f~ U~. 

Let us define the PDO q~ with the symbol q) E E(Z') in the space F ( Z ' )  by the formula 

(6~p) [u~ : &~(~P [-u~). (46) 

Formulae (43)-(46) lead easily to the following result. 

Theorem 5. The PDO c~ with symbols • 6 S ( Z )  are correctly defined rood O(h). The 

commutation formula 

(i/h)[q~, G] = {q~,-'-G} + O(h) (47) 

holds on a dense domain (with the Poisson bracket {., • } generated by the symplectic structure 

on Z )  

Remark 4. 
(1) For our infinite-dimensional construction we have extended the general scheme of 

asymptotic quantization proposed by Karasev and Maslov [KM1,KM2]. However the 

sheaf appearing in our construction is simpler because the symbols we are considering 

are restricted to be analytic. 
(2) Our definition of  PDO is based on properties of  the representation of  canonical commu- 

tation relations in L 2 ( ~ - ,  r/). It seems to be possible to replace the Gaussian measure 

r/by more general smooth measure/z satisfying some additional conditions. 

(3) The Dirichlet operator 7-( u associated with measure # (see e.g. [AKR,AR,BK]) can 

also be considered (at least heuristically) as the function of  operators satisfying the 

canonical commutation relations in L2(~ ,  #).  However H~ cannot be defined by the 

formula (17). Nevertheless it seems to be possible to obtain for H~ formulae of  the 

type (27) and (42) and to include it into our quantization scheme. Moreover the unitary 

group corresponding to H~ could be used in the construction of invariant PDO with 

symbols on the solution manifold of  the Hamiltonian system associated with the formal 

symbol of  H u. In particular, this class of  manifolds includes the solution manifold of 

the wave equation [Se]. 
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